Necessary and Sufficient Conditions for S-Lemma and Nonconvex Quadratic Optimization∗
نویسندگان
چکیده
The celebrated S-lemma establishes a powerful equivalent condition for the nonnegativity of a quadratic function over a single quadratic inequality. However, this lemma fails without the technical condition, known as the Slater condition. In this paper, we first show that the Slater condition is indeed necessary for the S-lemma and then establishes a regularized form of the S-lemma in the absence of the Slater condition. Consequently, we present characterizations of global optimality and the Lagrangian duality for quadratic optimization problems with a single quadratic constraint. Our method of proof makes use of Brickman’s theorem and conjugate analysis, exploiting the hidden link between the convexity and the S-lemma.
منابع مشابه
Necessary and sufficient global optimality conditions for NLP reformulations of linear SDP problems
In this paper we consider the standard linear SDP problem, and its low rank nonlinear programming reformulation, based on a Gramian representation of a positive semidefinite matrix. For this nonconvex quadratic problem with quadratic equality constraints, we give necessary and sufficient conditions of global optimality expressed in terms of the Lagrangian function.
متن کاملUnified global optimality conditions for smooth minimization problems with mixed variables
In this paper we establish necessary as well as sufficient conditions for a given feasible point to be a global minimizer of smooth minimization problems with mixed variables. These problems, for instance, cover box constrained smooth minimization problems and bivalent optimization problems. In particular, our results provide necessary global optimality conditions for difference convex minimiza...
متن کاملOptimality conditions for approximate solutions of vector optimization problems with variable ordering structures
We consider nonconvex vector optimization problems with variable ordering structures in Banach spaces. Under certain boundedness and continuity properties we present necessary conditions for approximate solutions of these problems. Using a generic approach to subdifferentials we derive necessary conditions for approximate minimizers and approximately minimal solutions of vector optimizatio...
متن کاملConditions for Global Optimality 2
In this paper bearing the same title as our earlier survey-paper [11] we pursue the goal of characterizing the global solutions of an optimization problem, i.e. getting at necessary and sufficient conditions for a feasible point to be a global minimizer (or maximizer) of the objective function. We emphasize nonconvex optimization problems presenting some specific structures like ‘convexanticonv...
متن کاملStrong Duality in Nonconvex Quadratic Optimization with Two Quadratic Constraints
We consider the problem of minimizing an indefinite quadratic function subject to two quadratic inequality constraints. When the problem is defined over the complex plane we show that strong duality holds and obtain necessary and sufficient optimality conditions. We then develop a connection between the image of the real and complex spaces under a quadratic mapping, which together with the resu...
متن کامل