Necessary and Sufficient Conditions for S-Lemma and Nonconvex Quadratic Optimization∗

نویسندگان

  • V. Jeyakumar
  • N. Q. Huy
  • G. Y. Li
چکیده

The celebrated S-lemma establishes a powerful equivalent condition for the nonnegativity of a quadratic function over a single quadratic inequality. However, this lemma fails without the technical condition, known as the Slater condition. In this paper, we first show that the Slater condition is indeed necessary for the S-lemma and then establishes a regularized form of the S-lemma in the absence of the Slater condition. Consequently, we present characterizations of global optimality and the Lagrangian duality for quadratic optimization problems with a single quadratic constraint. Our method of proof makes use of Brickman’s theorem and conjugate analysis, exploiting the hidden link between the convexity and the S-lemma.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Necessary and sufficient global optimality conditions for NLP reformulations of linear SDP problems

In this paper we consider the standard linear SDP problem, and its low rank nonlinear programming reformulation, based on a Gramian representation of a positive semidefinite matrix. For this nonconvex quadratic problem with quadratic equality constraints, we give necessary and sufficient conditions of global optimality expressed in terms of the Lagrangian function.

متن کامل

Unified global optimality conditions for smooth minimization problems with mixed variables

In this paper we establish necessary as well as sufficient conditions for a given feasible point to be a global minimizer of smooth minimization problems with mixed variables. These problems, for instance, cover box constrained smooth minimization problems and bivalent optimization problems. In particular, our results provide necessary global optimality conditions for difference convex minimiza...

متن کامل

Optimality conditions for approximate solutions of vector optimization problems with variable ordering structures

‎We consider nonconvex vector optimization problems with variable ordering structures in Banach spaces‎. ‎Under certain boundedness and continuity properties we present necessary conditions for approximate solutions of these problems‎. ‎Using a generic approach to subdifferentials we derive necessary conditions for approximate minimizers and approximately minimal solutions of vector optimizatio...

متن کامل

Conditions for Global Optimality 2

In this paper bearing the same title as our earlier survey-paper [11] we pursue the goal of characterizing the global solutions of an optimization problem, i.e. getting at necessary and sufficient conditions for a feasible point to be a global minimizer (or maximizer) of the objective function. We emphasize nonconvex optimization problems presenting some specific structures like ‘convexanticonv...

متن کامل

Strong Duality in Nonconvex Quadratic Optimization with Two Quadratic Constraints

We consider the problem of minimizing an indefinite quadratic function subject to two quadratic inequality constraints. When the problem is defined over the complex plane we show that strong duality holds and obtain necessary and sufficient optimality conditions. We then develop a connection between the image of the real and complex spaces under a quadratic mapping, which together with the resu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008